首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   630篇
  免费   5篇
  国内免费   103篇
化学   543篇
晶体学   2篇
力学   15篇
数学   79篇
物理学   99篇
  2023年   24篇
  2022年   12篇
  2021年   19篇
  2020年   31篇
  2019年   11篇
  2018年   14篇
  2017年   22篇
  2016年   15篇
  2015年   19篇
  2014年   26篇
  2013年   42篇
  2012年   19篇
  2011年   48篇
  2010年   35篇
  2009年   49篇
  2008年   47篇
  2007年   59篇
  2006年   46篇
  2005年   37篇
  2004年   31篇
  2003年   18篇
  2002年   20篇
  2001年   12篇
  2000年   8篇
  1999年   9篇
  1998年   9篇
  1997年   12篇
  1996年   7篇
  1995年   7篇
  1994年   3篇
  1993年   8篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1986年   2篇
  1984年   3篇
  1978年   1篇
排序方式: 共有738条查询结果,搜索用时 15 毫秒
1.
In this work, Zn-based coordination polymer [Zn2(1,3-bdc)bzim2]n was successfully synthesized by the sonochemical method using a 13 mm probe-type ultrasound operating at 20 kHz and amplitudes of 30, 40 and 50% corresponding to an acoustic power of 5.5, 8.6, and 10.3 W, respectively. Additionally, a sample was prepared by the slow-diffusion method for comparison. The samples were characterized by FTIR, PXRD, SEM, and BET techniques. The influence of the time and sonication amplitude on the yield of the reaction, crystallite size, and morphology were also studied. It was found that the sonochemical method provided the desired product in 83.9% within 20 min of sonication using the highest level of sonication amplitude. Moreover, this approach resulted in regular, controlled morphology, smaller particles, and higher surface area of the Zn-sample and derived oxide, than the slow diffusion method. The samples prepared by different methodologies were tested for the adsorption of BTEX (benzene, toluene, ethylbenzene, and xylenes) components in six different systems, and the uptakes were quantified by 13C NMR spectroscopy. Both samples showed excellent adsorption of benzene, 119.8 mmol/g, and 88.1 mmol/g, for the coordination polymers prepared via the sonochemical and slow-diffusion methods, respectively, corresponding to 63.9%, and 46.9%. These results are in agreement with the non-polar surface of these samples.  相似文献   
2.
《Physics letters. A》2020,384(24):126600
This work was primarily focused on the synthesis, characterization and biomedical applications of cobalt ferrite (CoFe2O4) nanoparticles, which were synthesized by a facile solvothermal method using an amino acid of Leucine (Leu) as the surface coating agents. The morphology, structure and properties of the as-synthesized uncoated and Leu-coated CoFe2O4 nanoparticles were characterized in detail by means of XRD, SEM, TEM, DLS, FTIR, XPS, TGA and SQUID. More importantly, it was found that the Leu-coated CoFe2O4 nanoparticles can be used as the efficient drug delivery with a drug loading capacity of 0.32 mg/mg for doxorubicin hydrochloride (DOX), and the loaded DOX demonstrated a sustained and progressive release manner. The in vitro cytotoxicity studies towards the HeLa cells were carried out, and the results indicated that the Leu-coated CoFe2O4 nanoparticles exhibited a relatively high cell viability compared with that of bare CoFe2O4 nanoparticles and the DOX loaded Leu-coated CoFe2O4 nanoparticles presented an obvious cytotoxic effect on HeLa cells.  相似文献   
3.
Gold nanostars(Au NSs) are asymmetric anisotropic nanomaterials with sharp edge structure. As a promising branched nanomaterial, Au NS has excellent plasmonic absorption and scattering properties. In order to tune the plasmonic photothermal and surface-enhanced Raman scattering(SERS) activity of Au NSs to obtain the desired characteristics, the effects of reagents on the local surface plasmon resonance(LSPR) bands of Au NSs were studied and the morphology and size were regulated. Nanoparticles with different sharp edges were synthesized to make their local plasmon resonance mode tunable in the visible and near-infrared region. The effects of the number and sharpness of different tips under the control of AgNO3 on the photothermal response of Au NSs and the SERS activity and their mechanism were discussed in detail. The results show that as the length of the branch tip becomes longer and the sharpness increases, the plasmonic photothermal effect of Au NSs is strengthened, and the photothermal conversion efficiency is the highest up to 40% when the length of Au NSs is the longest. Au NSs with high SERS activity are used for the Raman detection substrate. Based on this property, the quantitative detection of the pesticide thiram is achieved.  相似文献   
4.
An ultrasound standing wave field (SWF) has been utilized in many biomedical applications. Here, we demonstrate how a SWF can enhance drug release using acoustic droplet vaporization (ADV) in an acoustically-responsive scaffold (ARS). ARSs are composite fibrin hydrogels containing payload-carrying, monodispersed perfluorocarbon (PFC) emulsions and have been used to stimulate regenerative processes such as angiogenesis. Elevated amplitudes in the SWF significantly enhanced payload release from ARSs containing dextran-loaded emulsions (nominal diameter: 6 μm) compared to the -SWF condition, both at sub- and suprathreshold excitation pressures. At 2.5 MHz and 4 MPa peak rarefactional pressure, the cumulative percentage of payload released from ARSs reached 84.1 ± 5.4% and 66.1 ± 4.4% under + SWF and -SWF conditions, respectively, on day 10. A strategy for generating a SWF for an in situ ARS is also presented. For dual-payload release studies, bi-layer ARSs containing a different payload within each layer were exposed to temporally staggered ADV at 3.25 MHz (day 0) and 8.6 MHz (day 4). Sequential payload release was demonstrated using dextran payloads as well as two growth factors relevant to angiogenesis: basic fibroblast growth factor (bFGF) and platelet-derived growth factor BB (PDGF-BB). In addition, bubble growth and fibrin degradation were characterized in the ARSs under +SWF and -SWF conditions. These results highlight the utility of a SWF for modulating single and dual payload release from an ARS and can be used in future therapeutic studies.  相似文献   
5.
This work focuses on optimal controls of a class of stochastic SIS epidemic models under regime switching. By assuming that a decision maker can influence the infectivity period, our aim is to minimize the expected discounted cost due to illness, medical treatment, and the adverse effect on the society. In addition, a model with the incorporation of vaccination is proposed. Numerical schemes are developed by approximating the continuous-time dynamics using Markov chain approximation methods. It is demonstrated that the approximation schemes converge to the optimal strategy as the mesh size goes to zero. Numerical examples are provided to illustrate our results.  相似文献   
6.
We used correlative transmission electron microscopy (TEM) and nanoscale secondary ion mass spectrometry (NanoSIMS) imaging to quantify the contents of subvesicular compartments, and to measure the partial release fraction of 13C-dopamine in cellular nanovesicles as a function of size. Three modes of exocytosis comprise full release, kiss-and-run, and partial release. The latter has been subject to scientific debate, despite a growing amount of supporting literature. We tailored culturing procedures to alter vesicle size and definitively show no size correlation with the fraction of partial release. In NanoSIMS images, vesicle content was indicated by the presence of isotopic dopamine, while vesicles which underwent partial release were identified by the presence of an 127I-labelled drug, to which they were exposed during exocytosis allowing entry into the open vesicle prior to its closing again. Demonstration of similar partial release fractions indicates that this mode of exocytosis is predominant across a wide range of vesicle sizes.  相似文献   
7.
The highly controlled and efficient polymerization of ethylene is a very attractive but challenging target. Herein we report on a Coordinative Chain Transfer Polymerization catalyst, which combines a high degree of control and very high activity in ethylene oligo- or polymerization with extremely high chain transfer agent (triethylaluminum) to catalyst ratios (catalyst economy). Our Zr catalyst is long living and temperature stable. The chain length of the polyethylene products increases over time under constant ethylene feed or until a certain volume of ethylene is completely consumed to reach the expected molecular weight. Very high activities are observed if the catalyst elongates 60 000 or more alkyl chains and the polydispersity of the strictly linear polyethylene materials obtained are very low. The key for the combination of high control and efficiency seems to be a catalyst stabilized by only one strongly bound monoanionic N-ligand.  相似文献   
8.
Divergent synthesis of fluorine-containing scaffolds starting from a suite of raw materials is an intriguing topic. Herein, we report the solvent-controlled rhodium-catalyzed tunable arylation of 1-bromo-2,2-difluoroethylene. The selection of the reaction solvents provides switchable defluorinated or debrominated arylation from readily available feedstock resources (both arylboronic acids/esters and 1-bromo-2,2-difluoroethylene are commercially available). This switch is feasible because of the difference in coordination ability between the solvent (CH2Cl2 or CH3CN) and the rhodium center, resulting in different olefin insertion. This protocol allows the convenient synthesis of monofluoroalkenes and gem-difluoroalkenes, both of which are important scaffolds in the fields of medicine and materials. Moreover, this newly developed solvent-regulated reaction system can be applied to the site-selective dechlorinated arylation of trichloroethylene. Overall, this study provides a useful strategy for the divergent synthesis of fluorine-containing scaffolds and provides insight into the importance of solvent selection in catalytic reactions.  相似文献   
9.
Boron trifluoride (BF3) is a highly corrosive gas widely used in industry. Confining BF3 in porous materials ensures safe and convenient handling and prevents its degradation. Hence, it is highly desired to develop porous materials with high adsorption capacity, high stability, and resistance to BF3 corrosion. Herein, we designed and synthesized a Lewis basic single-crystalline hydrogen-bond crosslinked organic framework (HCOF-50) for BF3 storage and its application in catalysis. Specifically, we introduced self-complementary ortho-alkoxy-benzamide hydrogen-bonding moieties to direct the formation of highly organized hydrogen-bonded networks, which were subsequently photo-crosslinked to generate HCOFs. The HCOF-50 features Lewis basic thioether linkages and electron-rich pore surfaces for BF3 uptake. As a result, HCOF-50 shows a record-high 14.2 mmol/g BF3 uptake capacity. The BF3 uptake in HCOF-50 is reversible, leading to the slow release of BF3. We leveraged this property to reduce the undesirable chain transfer and termination in the cationic polymerization of vinyl ethers. Polymers with higher molecular weights and lower polydispersity were generated compared to those synthesized using BF3 ⋅ Et2O. The elucidation of the structure–property relationship, as provided by the single-crystal X-ray structures, combined with the high BF3 uptake capacity and controlled sorption, highlights the molecular understanding of framework-guest interactions in addressing contemporary challenges.  相似文献   
10.
血液中的循环肿瘤细胞(CTCs)与癌症转移密切相关,对CTCs进行检测有利于实现癌症早期诊断。但由于血液中CTCs个数稀少且存在异质性,因此急需发展血液中CTCs的高效分离及检测方法。此外,释放被捕获的细胞并进行后续培养及基因水平分析,将会进一步推进癌症的个性化治疗。本文综述了近年来CTCs捕获及释放的相关研究进展,并展望了其应用前景及发展方向。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号